首页> 外文OA文献 >Phase coexistence and hysteresis effects in the pressure-temperature phase diagram of NH3BH3
【2h】

Phase coexistence and hysteresis effects in the pressure-temperature phase diagram of NH3BH3

机译:NH3BH3的压力-温度相图中的相共存和磁滞效应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The potential hydrogen storage compound NH3BH3 has three known structural phases in the temperature and pressure ranges 110–300 K and 0–1.5 GPa, respectively. We report here the boundaries between, and the ranges of stability of, these phases. The phase boundaries were located by in situ measurements of the thermal conductivity, while the actual structures in selected areas were identified by in situ Raman spectroscopy and x-ray diffraction. Below 0.6 GPa, reversible transitions involving only small hysteresis effects occur between the room-temperature tetragonal plastic crystal I4mm phase and the low-temperature orthorhombic Pmn21 phase. Transformations of the I4mm phase into the high-pressure orthorhombic Cmc21 phase, occurring above 0.8 GPa, are associated with very large hysteresis effects, such that the reverse transition may occur at up to 0.5 GPa lower pressures. Below 230 K, a fraction of the Cmc21 phase is metastable to atmospheric pressure, suggesting the possibility that dense structural phases of NH3BH3, stable at room temperature, could possibly be created and stabilized by alloying or by other methods. Mixed orthorhombic Pmn21/Cmc21 phases were observed in an intermediate pressure-temperature range, but a fourth structural phase predicted by Filinchuk et al. [ Phys. Rev. B 79 214111 (2009)] was not observed in the pressure-temperature ranges of this experiment. The thermal conductivity of the plastic crystal I4mm phase is about 0.6 W m−1 K−1 and only weakly dependent on temperature, while the ordered orthorhombic phases have higher thermal conductivities limited by phonon-phonon scattering.
机译:潜在的储氢化合物NH3BH3在温度和压力范围分别为110-300 K和0-1.5 GPa时具有三个已知的结构相。我们在这里报告这些阶段之间的边界和稳定性范围。通过热导率的原位测量确定相界,而通过拉曼光谱和X射线衍射确定选定区域的实际结构。低于0.6 GPa,在室温四方塑料晶体I4mm相和低温正交晶Pmn21相之间会发生仅涉及小的磁滞效应的可逆转变。高于0.8 GPa发生的I4mm相到高压正交晶体Cmc21相的转换具有非常大的磁滞效应,因此反向转换可能会在低至0.5 GPa的压力下发生。在230 K以下,一部分Cmc21相可稳定到大气压下,这表明可能通过合金化或其他方法产生并稳定在室温下稳定的NH3BH3致密结构相。在中等压力-温度范围内观察到正交相Pmn21 / Cmc21混合相,但Filinchuk等人预测了第四结构相。 [物理Rev.B 79 214111(2009)]在该实验的压力-温度范围内未观察到。塑性晶体I4mm相的热导率约为0.6 W m-1 K-1,并且仅微弱地依赖于温度,而有序的正交相具有较高的热导率,受声子-声子散射的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号